Detecting sociosemantic communities by applying social network analysis in tweets
نویسندگان
چکیده
منابع مشابه
Detecting Overlapping Communities in Social Networks using Deep Learning
In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...
متن کاملanalysis of power in the network society
اندیشمندان و صاحب نظران علوم اجتماعی بر این باورند که مرحله تازه ای در تاریخ جوامع بشری اغاز شده است. ویژگیهای این جامعه نو را می توان پدیده هایی از جمله اقتصاد اطلاعاتی جهانی ، هندسه متغیر شبکه ای، فرهنگ مجاز واقعی ، توسعه حیرت انگیز فناوری های دیجیتال، خدمات پیوسته و نیز فشردگی زمان و مکان برشمرد. از سوی دیگر قدرت به عنوان موضوع اصلی علم سیاست جایگاه مهمی در روابط انسانی دارد، قدرت و بازتولید...
15 صفحه اولWho Reads Corporate Tweets? Network Analysis of Follower Communities
Social networking sites became very popular since the introduction of Six Degrees in 1997 and companies started to utilize them to build online communities. This research aims to further understand online communities by analyzing the network structure and composition of Twitter follower networks. An explorative analysis is conducted on the Twitter follower network of Europe’s twenty-five larges...
متن کاملApplying social network analysis to security
In this paper, we set out to explore some of the many ways in which Social Network Analysis (SNA) can be applied to the field of security. In particular, we investigate what information someone (e.g., an attacker) could infer if they were able to gather data on a person’s friend-groups or device communications (e.g., email interactions) and whether this could be used to predict the “hierarchica...
متن کاملDetecting Opinions in Tweets
Given the incessant growth of documents describing the opinions of different people circulating on the web, including Web 2.0 has made it possible to give an opinion on any product in the net. In this paper, we examine the various opinions expressed in the tweets and classify them (positive, negative or neutral) by using the emoticons for the Bayesian method and adjectives and adverbs for the T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Social Network Analysis and Mining
سال: 2015
ISSN: 1869-5450,1869-5469
DOI: 10.1007/s13278-015-0280-2